| Module definition |
| Module Example |
| Module Example |
| Z_module |
| Z_module and the difference between vector space and module |
| sub-module criteria |
| example of sub-module |
| examples of sub-module |
| sub-module examples solution |
| sub-module examples solution |
| sub-module example solution |
| is R^n be sub-module? |
| Rn be sub-module |
| module homomorphism |
| every ring homomorphism is module homomorphism but the converse is not true. |
| a map is an R-module homomorphism |
| an abelian group is a ring homomorphism |
| elements of ring homomorphism are module homomorphism |
| ring homomorphism is group |
| ring homomorphism is abelian |
| endomorphism, quotient module, R-module is homomorphism with kernel |
| Quotient group under the action of ring elements |
| projection map is a module homomorphism |
| sub-module, the sum of the module,1st isomorphism theorem of the module |
| 2nd,3rd,4th isomorphism theorems of module |
| proposition |
| pi is surjective |
| cyclic module |
| finitely generated module |
| R module is finitely generated |
| direct product, free module |
| free module example, direct product is R module |
| Module fundamentals |
No comments:
Post a Comment